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Stagnant volumes, cavities between grains, etc., influence the steady-state 
stability in an isothermal flow reactor. Mass transfer between the stagnant 
and flow regions may be described via relaxation equations in fairly general 
form. Equations and algorithms are given for defining the steady-state sta- 
bility, and examples are considered. 

Introduction. Production organization requires the determination of stationary states 
and stability in chemical reactors. In numerous theoretical studies, this has been examined 
mainly for two limiting states, ideal displacement and ideal mixing. In addition, it is 
traditional to neglect the separate circulation zones that may exist in a reactor and the 
relaxation in mass transfer in granular catalyst beds. 

Here is shown that these features can be incorporated in stability determination in a 
simple fashion. Considerable importance attaches to the additional conditions, and as there 
are some disagreements on this in the literature, we examine the topic for the boundary con- 
dition at the reactor inlet. 

i. Reactor Inlet Boundary Condition. Here is briefly discussed the usual boundary 
condition for the inlet to a reactor or granular bed: 

DaC/aX I.~=o = u (c--co),  ( i )  

in which C O is the concentration in the inlet flow, U the transport rate, and D the effec- 
tive diffusion (dispersion) coefficient. As the last decreases to the molecular diffusion 
coefficient D, for X § 0 [i, 2], condition (i) should contain D, instead of D, which with 
the usual situation D, << D leads to CIX= 0 = Co, which is proposed as the boundary condition. 
On the other hand, D is used in the basic dispersion equation. Then one has a natural choice 
of an equation with constant D (the range in which D is dependent on X for X + 0 is not con- 
sidered), but there is an ambiguity in choosing the boundary condition for X § 0. 

In the usual case where the zone for transition from D, to D is short, condition (i) 
is best. For definiteness, we take the equation for the diffusion model in the traditional 
form 

D.O [E(x) OCj__u~C OC , _ 
OX O-X 8 X  - 8"~ m(l)(C); .\'~(O, ft, (2) 

in which @(C) characterizes the reaction rate as a function of concentration, with Z the re- 
actor length; E is a fairly general function subject to the condition for sharp change in 
the section [0, A], where A << Z, and for X e A: E(X) = i, E'(X) << I, and at X = 0: E(0) = 
D,/D. The inlet boundary condition is 

D.OC/OX l x = o =  U ~ C- -Co)  (3) 

and is then not subject to doubt. The other conditions for uniqueness are not required for 
(2). 

The two small parameters A/~ << i and D,/D << i enable one to use perturbation theory 
[3] in order to establish the inlet boundary condition for 
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DO2C/OX "~- Uc)C/OX = OC/O'r + (D (C), ( 4 ) 

which can be cons ide r ed  as e x t e r n a l  [3] in t he  r eg ion  b << X g s Here D = cons t .  However, 
a simpler approach is as follows. We integrate (2) with respect to X with limits [0, A]: 

D OC a__UCIx=~ * ~ - x ~ o  6 - - ~ - ~ D ( C )  dX.  (5) 
OX ,\.= 

In the ordinary situation, the term in the integral in (5) is the order of one, so the en- 
tire integral is of the order of A, and as A << s (i) follows closely from (5) and (3), 
where it is desirable to replace A by zero in the final form of the boundary condition, i.e., 
to displace the origin somewhat. The physical significance of that conclusion relates to ma- 
terial balance for a layer of thickness A, within which the dispersion coefficient is depen- 
dent on X. The concentration changes within the layer are negligible by comparison with the 
fluxes at the layer boundaries. 

2. Formulat$on and Analysis. We now consider the steady-state stability. The basic 
equation is taken as 

Oc -- " d~ t Ozc Oc e z ( p ( C ) : = ~ - -  ~-~(l---~x) [K( t  ~)c(x, ;) ;, (6) 
Pe OX a OX Ot ' o 

in which = is the flow part of the reactor as a function of the total volume, c = C/C0, Pe = 
Us is the Peclet number, and ~(c) = s x = X/s K(t) describes the relaxation in 
mass transfer between the flow section and the stagnant volumes. We assume that K is inde- 
pendent of x, and the common case in practice is where the mass transfer between the flow 
section and the stagnant zones is described by the following kinetic equation [4]: 

(1--~) PeOcl /Ol=•  • (7) 

or a simple extension to the case of unequal exchange rates in the forward and reverse direc- 
tions. The integral in (6) coincides with cl, the concentration in the stagnant zones. 
Eliminating c I from (7) gives the kernel K as an exponential: K(t) = [x/Pe(l - ~)] exp [-• 
Pe(l - ~)], but the formulas for K in some other cases can be more complicated [5-7]. 

We now assume that K(t) is such that the relaxation term in (6) becomes zero for t + 
along with ~8c/8t, so the system goes over to one of the stationary states implied from the 
initial conditions for (6). The boundary conditions for (6) are standard: 

Pe-Oc/Oxi~=o=c--1,  Oc/Ox:~=l=O, (8) 

where the second condition is the Dankwerth one and the first is the dimensionless form of 
(i), so the stationary solution c = c,(x) satisfies 

P e - l d ~ c . / d x ~ - - d c ~ , / d x = ~ ( c . ) ,  x6(O, 1), (9) 

and (8). Solutions for particular 9(c) have been discussed [8-I0], where the number of sta- 
tionary states has also been determined. We subsequently take c,(x) as a known function. 

We linearized (6) near c,(x) to establish the stability: 

c = c . ( x ) §  i) exp (xPe/2), igl<<lc.(x)l, 

We substitute (i0) into (6) in the linear approximation: 

1 O2g [ P__e_e if- r (x)] g = c~ (t K (t 
Pe 8x ~ "t 4 - ~  + -- r ~ b - -  ~) g (x, ~) d~. 

(io) 

(11) 

The corresponding boundary conditions for (Ii) are 

Og/Oxl~=o --- Peg/21~=o, Og/Oxl~=~ ~ - -  Peg/21~=l. 

The solution to (ii) and (12) is the series 

(12) 

~o 

g (x, t) = ~ A,~Z~ (x) 0,~ (t), 
t t ~  I 

(13) 
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in which A n are coefficients defined by the initial condition, and as the initial condition 
is not required in order to establish the stability, the A n are not subsequently required. 
Z n are eigenfunctions for the Sturm-Liouville treatment for 

Pe" "d~Z~,/dx 2 + {L:--Pe/4--z.(p'  [c, (x)I }Z,, = 0 ( 14 ) 

w i t h  t h e  (12)  b o u n d a r y  c o n d i t i o n s ,  in  wh ich  one  s u b s t i t u t e s  f o r  Z n ,  w h i l e  X n a r e  t h e  e i g e n -  
values corresponding to Z n (n = 1, 2, 3, ...). It follows from (11)-(14) that the functions 
O n satisfy 

dO,~ @ ! t K (  t 
dt . . . .  

The initial condition for (15) is unimportant (@n(0) ~ 0), as it has no major significance, 
and a lower limit of 0 in the integrals in (6), (II), and (15) may be replaced by -~, while 
the upper one is simultaneously replaced by +~. 

The Sturm-Liouville problem for Zn(x) coinides with that considered in [I0] (~ = i), 
where several examples were examined for particular ~(c), and the first (least) eigenvalues 
X I were determined for them, which in the [i0] case [corresponds to (4)], that value was 
basic to the stability in the stationary state. Then 11 < 0 does not necessarily guarantee 
instability. One can judge the behavior of the concentration perturbation g from the asymp- 
totic behavior of @i for t § ~, since the condition i n > %1, n = 2, 3 .... [ii] implies 
that for any ordinary function K(t) e 0, the asyptotes to @n are more favorable for stabil- 
ity. For example, for bounded K(t): 0 ~ K_ ~ K(t) ~ K+, from (15) one readily gets 

exp{--t [En+ (i--~)K+]/~}~O~(t)/@n(O) 
(16) 

~ e x p { - - t  [ ~  + (1 - -~ )K- ] /~} ,  

which also implies that relaxation effects stabilize the system. We do not consider other 
possible constraints on K(t) and give preference to the K(t) usually found in practice, where 
the functions are subject to natural (physical) requirements. 

We further assume that K(t) has the Laplace transform K*(p), in which the asterisk re- 
lates to the transformed quantities and p is the variable. We apply it to (15) and assume 
for simplicity that On(0) = 1 to get 

in which the subscript n has been omitted. Inverting (17) is dependent on the structure of 
K*(p). If it is a single-valued function, the behavior of O(t) for t + ~ is governed by 
the residue of @*(p)exp (pt) at the singular point having the largest real part: p = p,, 
in which p, is the root of 

p, [~+ (I--~)K ~ (p,)] +~= 0, (18) 

where one assumes that the integration path in the Riemann-Mellin formula can be transformed 
in such a way as to provide appropriate behavior for the integrand function for p § ~ in a 
certain sector of the complex variable p [12]. If K*(p) has branch points, one should con- 
sider definite integrals related to the corresponding sections between such points. Such 
integrals usually tend to zero for t § ~. Equation (18) in any form is of basic signifi- 
cance to the stability. 

If K*(p) is a fractionally rational function, the stability analysis can be based on 
familiar methods and tests [13] widely used in automatic control. The parameter fluctua- 
tions (noise) usual in such systems are assumed to be slight and not capable of affecting 
the qualitative behavior, as has recently been pointed out [14, 15]. 

3. Limiting Forms. To consider limiting cases, we assume that all the parameters 
apart from the limiting one are of the order of one, in order to avoid possible nonuniformi- 
ties in the expansions, although sometimes it is simpler to consider the parameter angle 
where uniformity is not disrupted. 

One usually tends not to assume that there are stagnant zones, so interest attaches to 
the case of g close to one, when the root of (18) can be found approximately by perturbation 
methods [3] by reference to 1 - g: 
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p,=-->~+ {l--a)X[K* (-->0--11 § ~-+I--0. 
(19) 

Stability occurs for Rep, < 0. A shift in p, relative to the form without relaxation K* = 
0 constitutes (i - ~)XK*(-X), i.e., in the absence of stability (X < 0) and what occurs for 
K(t) 2 0 with the inequality K*(p) > 0 for real p > 0, so relaxation stabilizes the reactor. 
Stagnant zones (~ ~ I) stabilize the system but reduce the active zone for the reaction by 
a factor = [the = factor with ~(c) in (6)]. 

The second limiting form is ideal displacement, Pe § ~: 

c ,=-G(x )q -Pe- l c~g , [G(1) ]  exp [Pe (x-- l ) ] ,  

has G(x) the inversion of the integral 

(20) 

1 

~ x =  f d~/rD(g), (21) 
G 

and on substitution into (9) and (8) satisfies them with an error of the order of Pe -I, which 
tends to zero. If the (21) integral converges within (0, i) limits, one assumes that its 
value exceeds ~, which is a guarantee that G does not become zero in the range (0, i). As 
one usually considers ~i as sign-constant, (21) will be a monotone function of G, so there is a 
unique inverse function G(x), i.e., there is a unique stationary state under these condi- 
tions. 

One cannot use (14) to analyze the stability here because the condition for the pertur- 
bation g exp (xPe/2) to be small is violated for Pe + ~, which makes the subsequent expres- 
sions unsound. Here we can examine (6) directly for stability for Pe + ~. In the main re- 
gion in the reactor (far from the boundary layer zone at x = i), (6) does not contain the 
diffusion term Pe-182c/Sx 2, and the linear analog of (ii) derived with the c = G(x) + g(x, 
t), Igl << G linearization from (6) is readily analyzed by operational methods. With the 
initial perturbation g(x, 0) = g0(x), the expression for g following Laplace transformation 
with respect to t is 

x 

g*{x, p)=~ a~ [G(x)] y g0(~) {~[G(;)l}-~exp {p(~--x)[~ + (1 - -  a) K*(p)]} d~. 
0 

(22) 

Inversion of (22) is dependent on the features of pK*(p) for finite p and for p + ~, 
and there are no particular problems in the asymptotic examination of g(x, t) for t § ~ for 
the K(t) used in practice. Here ~(c) has not effect on the inversion of (22) in the p plane, 
i.e., the qualitative features are governed only by K(t). 

The opposite case Pe + 0 is more interesting. One uses (6) and constructs the limiting 
equation as in [16, 17], which gives [c = c(t)]: 

d 
! 

[~c+ (I--~)I K(t--~)c(E)d$]-- 1 - - c - - ~ { p ( c ) .  (23) 
dt ~ ~ ' 

The stationary states c = c, = const(x) are defined by 

~ ( c )  = l--c, (24) 

and the behavior of the perturbation g, c = c, + g(t), [gl << c,, is described by 

d l 
d T  [~g-t-(1--  m) !' K ( t - - ~ ) g ( ~ ) d 2  ] ....... g[1 + ~{p' (c,)]. (25) 

' 8 

Laplace transformation and subsequent steps result in the replacement of (18) by 

p, [~+ (1--~)K* (p,)] + 1 + ~ ' ( c . ) = 0 ,  (26) 

f o r  de te rmin ing  the  s t a b i l i t y  bounds in r e l a t i o n  to  the  pa r ame t e r s ,  i . e . ,  he re  f o r  h in (18) 
one o b t a i n s  an a n a l y t i c  formula  dependent  on ~ and c , .  

This  example i s  r e a d i l y  ex tended  to  p r o p e r t y  inhomogenei ty  along t he  r e a c t o r ,  where D, 
K, and (i a re  e x p l i c i t l y  dependent  on x, i . e . ,  D = D(x, c ) ,  K = K(x, t ) ,  {p=~ (x ,  c ) .  The 
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Peclet number constituted by the minimum possible D should be small, and then (23) is re- 
placed [16, 17] by 

d, lec.+_( l ....... ~)ic({)d~ fK(x,  t . . . .  ~)dx] t ~ - c - - ~  c(O]dx, (27) 
dt 6 ~5 J 6 

It will also be simple to incorporate the x dependence of ~. The equation for stationary 
states corresponds to the rhs in (27) being zero for c(t) = c,, and one can also readily ex- 
tend (25) for the evolution of g, but we do not give the equation. 

4. Examples. We first consider mass transfer between the flow section and the stag- 
nant zones as defined by (7), where K*(p) = x/[l - ~)p Pe + • and (18) readily gives the 
root p, having the largest real part: 

Y i •  + s P e ( t - - ~ ) ]  2 - - 4  P e s 2 1 5  ..... •  Pe ( l  l ~) 
P* - 2 P e ~ ( 1  - - ~ )  - -  , ( 2 8 )  

where for this branch in the root we have taken s = i. For X < 0, the stagnant volumes 
tend to stabilize the system. 

In the second example, we take K(t) as K(t) = ~/~, $ = const > 0, which is a common 
case [6, 7, 18], and where K*(p) = $/s Equation (18) gives the root with the largest 
real part for ~ < 0 as 

with the same branch for the square root as in the first example. 

If the concentration changes slowly, mass transfer in a two-phase system can be examined 
from the equivalent equation [6, 7, 19] of elliptic type, for which one can also readily de- 
termine the stability limit Rep, = 0. However, the K*(p) for it is derived as an approxi- 
mate relation for p + 0 from the K*(p) in the first example, so we do not consider this case. 

Conclusions. We have considered how mass-transfer relaxation between the flow part and 
the stagnant volumes affects the stability in an isothermal flow reactor. Stability testing 
requires firstly that one should determine the stationary solution to (9) and then derive 
the first eigenvalue %l in the Sturm-Liouville problem of (12) and (14). Those topics have 
been considered in detail in [i0]. Then one should determine the root p, of (18) for the 

= Xl with the largest real part. The condition Rep, = 0 represents the stability limit, 
which is observed for Rep, < 0. With the positive relaxation kernels K(t) usually found in 
practice, that effect tends to stabilize the stationary states. Studies have also been made 
on simplifying the procedure for the limiting cases ~ + i, Pe § ~, Pe + 0, which are particularly 
significant in the latter two cases, since those simplifications enable one to avoid employ- 
ing a numerical procedure [i0]. The results can be used in designing isothermal reactors. 

NOTATION 

C, C o , reagent concentration and initial value of it; g, concentration perturbation; 
t = ~U/~; X, coordinate along reactor; ~, time; *, Laplace-transformed quantities. 
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SENSITIVITY AND SPEED OF RESPONSE OF A SUPERCONDUCTING 

OPTOELECTRONIC THERMAL RADIATION DETECTOR 

O. S. Esikov, A. I. Krot, E. A. Protasov, 
V. P. Sobolev, and V. S. Kharitonov 

UDC 535.231.62:621.315.5:538.945 

Numerical estimates of the temperature sensitivity and speed of response are 
obtained for one type of sensing element of a superconducting optoelectronic 
thermal radiation detector. Possible ways to improve the performance charac- 
teristics of such an element are analyzed. 

Esikov and Protasov [I] have proposed a new principle for the detection of thermal ra- 
diation, described a circuit for its implementation, and estimated the possible sensitivity 
of an integrated superconducting optoelectronic detector (ISOD) operating on this principle. 
The subsequent improvement of such systems, particularly in the design of widescreen detec- 
tors for moving images, calls for the solution of several problems pertaining to the optimiza- 
tion of their geometrical and thermophysical characteristics with a view toward maximizing 
the sensitivity, speed of response, and uniformity of the distribution of these parameters 
over the sensing area. The overall sensitivity of the ISOD is characterized by the product 
of the permeability variation of the superconducting sensing element per unit heat flux in- 
cident on it and the sensitivity of a magnetooptical transducer to a corresponding variation 
of the heat flux through the sensing element. The possible sensitivity of a magnetooptical 
transducer has been estimated previously [i]. The ultimate sensitivity of the sensing ele- 
ment depends on the width of the superconducting transition of the superconducting film, the 
strength of the magnetic field applied to the sensing element, and the thermal resistance 
of the elements used to create thermal coupling of the superconducting film with the thermo- 
stat [2]. The speed of the ISOD is limited mainly by the rise time of the temperature field 
in the sensing element and by the speed of the counting device. 

In the present article we analyze the speed and sensitivity characteristics of the sens- 
ing element of a particular ISOD configuration (Fig. i) with a uniformly illuminated sensing 
surface. The sensing element is a smooth thin wafer of strontium titanate with a supercon- 
ducting film of the type Y-Ba-Cu-O deposited on its top surface. The thermostat is a copper 
ring with its outer circumference cooled by liquid nitrogen, The sensing element is thermal- 
ly coupled with the thermostat through a thin-film thermal resistance, which serves as a reg- 
ulator of the sensitivity and speed of the sensing element. 
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